Schmidt Decomposable Products of Projections
نویسندگان
چکیده
منابع مشابه
ON THE CONTINUITY OF PROJECTIONS AND A GENERALIZED GRAM-SCHMIDT PROCESS
Let ? be an open connected subset of the complex plane C and let T be a bounded linear operator on a Hilbert space H. For ? in ? let e the orthogonal projection onto the null-space of T-?I . We discuss the necessary and sufficient conditions for the map ?? to b e continuous on ?. A generalized Gram- Schmidt process is also given.
متن کاملProducts of Orthogonal Projections
We give a characterization of operators on a separable Hilbert space of norm less than one that can be represented as products of orthogonal projections and give an estimate on the number of factors. We also describe the norm closure of the set of all products of orthogonal projections.
متن کاملReconstruction of Decomposable Discrete Sets from Four Projections
In this paper we introduce the class of decomposable discrete sets and give a polynomial algorithm for reconstructing discrete sets of this class from four projections. It is also shown that the class of decomposable discrete sets is more general than the class S ′ 8 of hv-convex 8but not 4-connected discrete sets which was studied in [3]. As a consequence we also get that the reconstruction fr...
متن کاملProducts with Closed Projections
Introduction. In this paper we study pairs (X, Y) of topological spaces which have the property that one or both of the projections from Xx Y is closed (maps closed sets to closed sets) or z-closed (maps zero sets to closed sets). These conditions on projections arise naturally from considerations involving the exponential map on function spaces ; in § 1 we make explicit their relationship to t...
متن کاملHilbert-Schmidt operators and tensor products of Hilbert spaces
Let V ⊗HS W be the completion of V ⊗alg W in the norm defined by this inner product. V ⊗HS W is a Hilbert space; however, as Garrett shows it is not a categorical tensor product, and in fact if V and W are Hilbert spaces there is no Hilbert space that is their categorical tensor product. (We use the subscript HS because soon we will show that V ⊗HS W is isomorphic as a Hilbert space to the Hilb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 2017
ISSN: 0378-620X,1420-8989
DOI: 10.1007/s00020-017-2402-x